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A scheme is presented to recover a band-limited function f of finite energy from
its sampling values on real sequences with an accumulation point. The result given
in this paper can also be viewed as an approach to the extrapolation problem of
determinating a band-limited function in terms of its given values on a finite
interval. An error estimate is also obtained. � 1997 Academic Press

1. INTRODUCTION

Let f : T � C be an W-band-limited complex-valued function of finite
energy on the real line R, i.e., f # L2(R) and f� (w)=0 outside [&W, W],
where W>0 and

f� (w)=|
�

&�
f (t) e&itw dt (w # R) (1)

is the Fourier transform of f. We have

f (t)=
1

2? |
W

&W
f� (w) eiwt dw (t # R). (2)
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By the Paley�Wiener theorem [2, pp. 103], f can be viewed as the restric-
tion of the entire function of exponential type at most W:

f (z)=
1

2? |
W

&W
f� (w) eiwz dw (z # C, the complex plane) (3)

to the real line R (so a band-limited function is always continuous).
Theoretically, the uniqueness theorem for analytic functions implies that f
can be wholly determined by its values at any sequence of different (inter-
polating) points with accumulation points in R. The goal of this paper is
to present a scheme to recover a W-band-limited function f of finite energy
from its sampling values at a convergent sequence of different points xn ,
n=1, 2, ..., with limit a # R.

This can be viewed as an approach to the (irregular) sampling problem
of band-limited functions which asks under which conditions and how a
band-limited function can be rebuilt if it is known only at a discrete set of
points. Because of its great importance in information theory, signal pre-
cessing and other application fields, a lot of work has been carried out on
(regular and irregular) sampling problems [1, 3, 6, 9, 12 etc.]. We note
that sampling theorems in literature demand that the sampling points are
dense enough and well scattered for the regular case or ``relatively well
scattered'' for the irregular case on the whole line R. The discrete set of
sampling points are equally spaced for the classical Shannon�Whittaker�
Kotel'nikov (regular) sampling theorem, and some kind of density (e.g.,
$-density used in [6]) for the sampling set is required for irregular sampling
problems. Our case is quite different, this kind of requirement is not
demanded here. This is one characteristic of the scheme presented in this
paper. Because our sampling (interpolating) points xn , n=1, 2, . . . converge
to a limit a, all but finite sampling points will be within an interval, say
[:, ;]. Thus our result can also be viewed as an approach to the extrapola-
tion problem of determinating a band-limited function in terms of its given
values on an interval [:, ;]/R [10]. So another characteristic of the
recovery scheme presented here is that it can be used to rebuild the func-
tion from its value on any nonempty interval. As the referees pointed out,
this scheme has drawbacks, to calculate the first n coefficients of the series,
one needs to solve n linear equations in n unknowns and the stability can
not be ensured. From this point of view, it would be proper to view our
scheme more as an extrapolation method than as a sampling method.

2. MAIN RESULT

Suppose [xn , n=1, 2, ...]/R, xj{xk ( j{k), and xn � a(n � �). If [ f (xn),
n=1, 2, ...] are known, we hope to reconstruct f from [ f (xn), n=1, 2, ...].
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Since we can consider fa(x)= f (x+a) with the sampling points [xn&a,
n=1, 2, ...], we may assume a=0 without loss of generality. Furthermore,
we may assume [xn] to be monotone decreasing because otherwise we can
consider a monotone decreasing convergent subsequence of [xn] or a mono-
tone decreasing convergent subsequence of [&xn] and f &(x)= f (&x).

Theorem 1. Let f : R � C be a W-band-limited function of finite energy,
[xn , n=1, 2, ...] be a monotone decreasing sequence and xn � 0(n � �),
then

,m(t)=:
m

1

Em(k) eikWt�me&iWt (4)

converges to f (t) uniformly on each compact subset S/R when m � �,
where the coefficients Em(k) are chosen so that the interpolation equations

f (xn)=,m(xn) (1�n�m) (5)

are satisfied, i.e., [Em(k), k=1, ..., m] is the solution of the system of linear
equations

f (xn)=:
m

1

Em(k) eikWxn�me&iWxn (1�n�m). (6)

Proof. For simplicity, we only prove the theorem for xn=1�n
(n=1, 2, ...). The general case can be proven similarly.

Under the above assumption, (6) becomes

f (1�n)=:
m

1

Em(k) eikW�(mn)e&iW�n (1�n�m). (7)

It is easy to verify that the determinant of coefficients for (7) is non-
singular, so the system of linear equations (7) has a unique solution
[Em(k), k=1, ..., m].

Take real numbers r1 and r2 such that

0<r1<r2<1 and 0<
2r1(1+r2)2

r2&r1

<1. (8)

For each m�1, the function

gm(z)=zm }
1

2? |
W

&W
f� (w) zmw�W dw (z # C) (9)
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and the polynomial

pm(z)=:
m

1

Em(k) zk (z # C) (10)

are analytic on D2=[z : |z&1|<r2]#D1=[z : |z&1|<r1].
Take a positive integer M such that the complex numbers

zm, n=eiW�(mn) (1�n�m) (11)

are in D1 when m>M. It follows from (9), (2), (7) and (10) that

gm(zm, n)=(zm, n)m }
1

2? |
W

&W
f� (w)(zm, n)mw�W dw

=eiW�n }
1

2? |
W

&W
f� (w) eiw�n dw

=eiW�nf (1�n)

=eiW�n :
m

k=1

Em(k) eikW�(mn)e&iW�n

= pm(zm, n). (12)

Thus pm(z) is the interpolating polynomial of degree at most m with the
values [gm(zm, n), n=1, ..., m] at the points [zm, n , n=1, ..., m]. By the
Hermite theorem [4, p. 68], we have for m>M and z # D1

gm(z)& pm(z)=
1

2?i |C2

(z&zm, 1)(z&zm, 2) } } } (z&zm, m) gm(t)
(t&zm, 1)(t&zm, 2) } } } (t&zm, m)(t&z)

dt, (13)

where C2=[z : |z&1|=r2] is the boundary of D2 . It follows directly from
(9) that

| gm(t)|�
(1+r2)m

2? |
W

&W
| f� (w)| (1+r2)m |w|�W dw

�(1+r2)2m 1
2? |

W

&W
| f� (w)| dw

=A(1+r2)2m (m>M, t # C2) (14)
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with the constant

A=
1

2? |
W

&W
| f� (w)| dw�

1
2? \|

W

&W
| f� (w)2| dw+

1�2

} (2W)1�2�� (15)

based on the Cauchy�Schwarz inequality and the fact that f is of finite
energy. Furthermore, we can verify for m>M, 1�n�m, t # C2 and z # D1

that

|z&zm, n |�2r1 , |t&zm, n |�r2&r1 , |t&z|�r2&r1 . (16)

Combining (14), (15), (16) and (13), we obtain

| gm(z)& pm(z)|�\ 2Ar2

r2&r1+\
2r1(1+r2)2

(r2&r1) +
m

. (17)

Thus it follows from (8) and (17) that

lim
m � �

| gm(z)& pm(z)|=0 (18)

uniformly for z # D1 .
For any fixed compact subset S/R, take a positive number T such that

S/[&T, T ]. It is not difficult to find a positive integer N>M such that
|eiWt�m&1|<r1 for all m>N and t # [&T, T ], this means

z(m, t)=eiWt�m # d1 (19)

for all m>N and t # [&T, T ]. Thus it follows from (18) and (19) that

lim
m � �

| gm(z(m, t))& pm(z(m, t))|=0 (20)

uniformly for t # S. But from (9) and (2), we have

gm(z(m, t))=eiWt }
1

2? |
W

&W
f� (w) eiwt dw=eiWtf (t), (21)

and from (10) and (4), we have

pm(z(m, t))=:
m

1

Em(k) eikWt�m=eiWt,m(t). (22)

Thus (20), (21) and (22) tell us that

lim
m � �

|,m(t)& f (t)|=0 (23)

uniformly for t # S/[&T, T ].
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3. ERROR ESTIMATE

We deal with the special case for [xn]=[1�n], because we can handle
the general case similarly.

Theorem 2. The assumptions are as in Theorem 1 with 1�n replacing xn

(n=1, 2, ...). For any 0<*<1 and T>0, we can find a positive integer N
such that, for any m>N, we have the error estimate:

|,m(t)& f (t)|<
22 - ?

9?
- WE *m (t # [&T, T ]), (24)

where [x] denotes the greatest integer which is less than x, E is the energy
of f, i.e.,

E=|
�

&�
| f (t)| 2 dt=

1
2? |

W

&W
| f� (w)| 2 dw. (25)

Proof. Take r1=*�(9+2*) and r2=1�2, then

0<r1<r2<1 and
2r1(1+r2)2

r2&r1

=*. (26)

It follows from (21), (22), (17), (26) and (15) that there is a positive integer
N such that, for any m>N, and t # [&T, T ],

|,m(t)& f (t)|�
2r2A

r2&r1

*m

�
2(9+2*)

9 �WE
?

*m

<
22 - ?

9?
- WE *m. (27)

Remark. An interesting topic is pointed out by one of the referees.
Although the recovery schemes derived from sampling theory are closely
related to complex function theory, the comparison between the classical
complex function theory and the sampling schemes deserves some discus-
sion. Surprisingly, very few references of this kind can be found in literature
though many authors pointed out that the sampling theory roots deeply in
classical complex function theory. The following statement can be found in
[9], ``Cardinal series have found favor in signal-processing applications,
undoubtedly because of the neat way in which it fits into the accompanying
Fourier analysis.''
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Although the sampling theory has the complex function theory as its
solid background, it was originally introduced ([7, 8, 11]) from applica-
tion domain. The sampling recovery schemes are more application-oriented
while the methods which come directly from the classical complex function
theory are more strict. A fact is that the two approaches are getting closer
and no clear boundary exists nowadays.
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